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We construct a theory for low-energy quantum transport in normal �superconductor junctions involving the
recently discovered iron-based high-Tc superconductors. We properly take into account both Andreev bound
surface states and the complex Fermi-surface topology in our approach and investigate the signatures of the
possible order-parameter symmetries for the FeAs lattice. Our results could be helpful in determining the
symmetry of the superconducting state in the iron-pnicitide superconductors.
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I. INTRODUCTION

Very recently, a family of iron-based superconductors
with high transition temperatures was discovered with a con-
comitant avalanche of both experimental and theoretical
activities.1–12 The highest Tc measured so far in this class of
materials is 55 K, and many experimental reports indicate
signatures of unconventional superconducting pairing. How-
ever, it remains to be clarified what the exact symmetry is for
both the orbital and spin parts of the Cooper pair wave
function—there has, for instance, been reports of both
nodal11 and fully gapped10 order parameters �OPs� in the
literature up to now.

Probing the low-energy quantum transport properties of
superconducting materials has proven itself as a highly use-
ful tool to access information about the symmetry of the
superconducting OP.13 The conductance spectra of
normal �superconductor �N �S� junctions often contain impor-
tant and clear signatures of the orbital structure of the OP.
For instance, when the OP contains nodes in the tunneling
direction with a sign change across the nodes on each side of
the Fermi surface, the conductance will display a large zero-
bias conductance peak �ZBCP� due to the presence of An-
dreev surface bound states.14

Two recent studies10,11 utilized the method of point-
contact spectroscopy in order to study the symmetry of the
superconducting OP in LaFeAsO0.9F0.1−� and
SmFeAsO0.85F0.15, respectively. The findings were in stark
contrast. Namely, the large ZBCP found in LaFeAsO0.9F0.1−�

gave evidence of a nodal order parameter, while the data of
SmFeAsO0.85F0.15 clearly indicated a nodeless OP. In both
these studies, the Blonder-Tinkham-Klapwijk15 �BTK�
framework was used to analyze the data theoretically using
the extension to anisotropic pairing by Tanaka and
Kashiwaya.16 In this model, one considers a cylindrical or
spherical Fermi surface with a free-electron dispersion rela-
tion, which does not account for the nontrivial multiband
Fermi-surface topology and dispersion relation in the iron
pnicitides. One might argue that the extended BTK model
nevertheless may suffice to describe the transport properties
of these materials qualitatively, but this statement clearly
warrants a detailed investigation.

In this Rapid Communication, we construct a theory of
low-energy quantum transport properties of the iron-based
high-Tc superconductors by considering a N �S junction rel-

evant for point-contact spectroscopy and scanning-tunneling-
microscopy measurements. In doing so, we model fairly ac-
curately the Fermi-surface topology and the associated
quasiparticle dispersions in order to see how this affects the
results as compared with the usual BTK paradigm. We con-
sider several possible OP symmetries which may be realized
in the iron pnicitides. We organize this work as follows. In
Sec. II, we introduce the theoretical framework which is used
to obtain the tunneling conductance. In Sec. III, we present
our main results and a discussion of these. Finally, we sum-
marize in Sec. IV.

II. THEORY

We adopt the minimal two-band model derived in Ref. 8
�Fig. 1�a��, in which the normal-state Hamiltonian reads

HN = �
k�

�k�
† ��kx − � �kxy

�kxy �ky − �
��k�, �1�

where the fermion basis �k�= �dkx� ,dky��T contains the an-
nihilation operators for electrons in the dxz and dyz orbitals
with spin � and wave vector k, respectively. We have also
defined �kx=−2t1cx−2t2cy −4t3cxcy, �kxy =−4t4sxsy, and
�ky =−2t2cx−2t1cy −4t3cxcy, with cj =cos�kja�, sj =sin�kja�, j
=x ,y, and a the lattice constant. By diagonalizing the above
Hamiltonian, one obtains
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FIG. 1. �Color online� �a� Illustration of the two-dimensional
FeAs plane with the dxz and dyz orbitals and hopping between them,
as proposed in Ref. 8. �b� Sketch of the Fermi-surface topology for
the long-lived quasiparticle excitations in a minimal two-band
model �see main text for parameter values�.
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HN = �
k�

�̃k�
† diag	�k

+,�k
−
�̃k�,

�k
� = ��kx + �ky�/2 − � � ���kx − �ky�2/4 + �kxy

2 , �2�

where the new basis �̃k�= �	k�
+ ,	k�

− �T consists of new fer-
mion quasiparticle operators in the bands + and − which are
hybrids of the dxz and dyz orbitals. The Fermi-surface topol-
ogy is given by �k

�=0 and gives an electronlike band �+�
and holelike band �−� shown in Fig. 1�b� for the choice t1
=−1, t2=1.3, t3= t4=−0.85, and �=1.54, all measured in
units of �t1�. Our choice of parameter set is motivated by the
fact that it reproduces the same Fermi-surface structure as
the local-density approximation �LDA� band-structure
calculations,17 and it was also employed in Refs. 18 and 19.
The new fermion operators are related to the old basis �k�

by


k = �kxy/���kx − �ky�/2 + ���kx − �ky�2/4 + �kxy
2 � ,

�k�
† Pk = �̃k�

† , Pk = �1 + 
k
2�−1/2 � � 1 − 
k


k 1
� . �3�

We now introduce a superconducting pairing between the
long-lived quasiparticles 	k�

� , with �=�, which then auto-
matically accounts for both interband and intraband pairings
in the original fermion basis �k,

HSC = �
k�

�k
��	k↑

� �†�	−k↓
� �† + H.c.� . �4�

In this way, we may diagonalize the total Hamiltonian H
=HN+HSC by introducing a final fermion basis �k

�

= �ck↑
� ,c−k↓

� �T describing the quasiparticle excitations in the
superconducting state. After discarding unimportant con-
stants, we find that

H = �
k��

�Ek
��ck�

� �†ck�
� , Ek

� = ���k
��2 + �k

��2�1/2. �5�

This result is formally identical to a two-band supercon-
ductor with gaps k

� and normal-state dispersions �k
�, with

�=�. The belonging wave functions which describe the qua-
siparticle excitations read

�k
� = 	�uk

�,vk
�e−i�k

�

�Tei�k�·r,�vk
�ei�k

�

,uk
��Te−i�k�·r
 ,

�uk
��2 = 1 − �vk

��2 =
1

2
�1 + �E2 − �k

��2/E� , �6�

for quasiparticles with positive excitation energies E�0.
Here, k� denotes the Fermi momentum for band � while

ei�k
�

=k
� / �k

��.
We have now effectively described the superconducting

state as a two-band model with gaps k
� and normal-state

dispersions �k
�. This has allowed us to obtain a simple form

for the wave functions in Eq. �6� that are to be used in the
scattering problem below. The trade off for this advantage,
however, is that the k dependence of the gap functions k

� in
general will become quite complicated. To see this, we may
transform Eq. �4� back to the original fermion basis �k by

means of our expression for Pk in Eq. �3� to find that

HSC = �
k

�kxdkx↑
† d−kx↓

† + kydky↑
† d−ky↓

†

+ kxy�dkx↑
† d−ky↓

† − dky↑
† d−kx↓

† � + H.c.� , �7�

where kx and ky are the intraorbital gaps while kxy is the
interorbital gap. They are defined as

kx = �k
+ + 
k

2k
−�/�k

+, ky = �k
− + 
k

2k
+�/�k

+,

kxy = 
k�k
+ − k

−�/�k
+, �k

� = �1 � 
k
2� . �8�

We see that the interorbital pairing vanishes in the case
where k

+=k
−. However, we emphasize that our model ac-

counts for interorbital pairing kxy in the original fermion
basis and that kxy �0 whenever k

+�k
−. We do not con-

sider any interband pairing in the new diagonalized fermion
basis. Assuming spin-singlet and even-frequency pairing,
there are three possible s-wave symmetries 	0 ,0�cx+cy� ,
0cxcy
 and two possible d-wave symmetries
	0�cx−cy� ,0sxsy
 for the superconducting order parameters
kx and ky in terms of the square lattice harmonics. The
gaps in the � quasiparticle hybridized bands are then ob-
tained as k

+= �kx−
k
2ky� /�k

− and k
−= �ky −
k

2kx� /�k
−.

Note that the extended s-wave symmetry �cxcy changes sign
on the electron and hole Fermi surfaces, similar to the s�

scenario suggested in Refs. 5 and 19.

III. RESULTS AND DISCUSSION

We are now in a position to evaluate the conductance of
the system. The presence of a Fermi-vector mismatch be-
tween the normal and superconducting sides of the junction
is assumed to be manifested through an effective decrease in
the junction transmission. Since the Fermi velocity may be
different in the two bands with normal-state dispersions �k

�,
we allow different barrier parameters Z� in the two bands.
For a specified pairing symmetry, there are then four fitting
parameters present: the barrier strength Z� and gap magni-
tude 0

� for band �=�. By generalizing the results of Refs.
15 and 16 to a two-band model which also takes into account
the nontrivial Fermi-surface topology in Fig. 1�a�, we obtain
the following expression for the normalized tunneling con-
ductance: G�eV� /G0=��,ky

f�ky��S
��eV� / �2f�ky��N

��, where
�N

� = �1+ �Z��2�−1 and

�S
��eV� = 	�N

��1 + �N
� ��+

��k,eV��2 + ��N
� − 1�

� ��+
��k,eV��−

��k,eV��2�
/��1 + ��N
� − 1�

� �+
��k,eV��−

��k,eV����k��2� ,

��
� �k,eV� =

eV − ��eV�2 − ����kx,ky��2

�����kx,ky��
,

���k� =
��− �kx,ky�����kx,ky���

���− �kx,ky����kx,ky��
, �9�

where f�ky�=cos�kya /2� is a weighting function that models
the directional dependence of the incoming quasiparticles.
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The strategy is now to sum the conductance over the allowed
values ky � �−� /a ,� /a� for the electronlike ��=1� and hole-
like ��=−1� Fermi surfaces and solve for kx from Eq. �2� by
�k

�=0 for a given ky. In what follows, we choose an equal
value for the barrier transparencies Z+=Z−Z and gap mag-
nitudes 0

+=0
−0 in the two bands for simplicity and add

a small imaginary number � to the quasiparticle energy to
model inelastic scattering eV→eV+ i�, where � /0=10−2.

As in Ref. 18, we choose 0=0.1. Clearly, it is possible to
study a rich variety of interplays between the two quasipar-
ticle bands in terms of different symmetries for the dxz and
dyz orbitals and with different gap magnitudes. Here, how-
ever, our main aim is to investigate how the conductance
spectra are influenced by the nontrivial Fermi-surface topol-
ogy and dispersion relations and see how this compares with
the cylindrical/spherical Fermi surface and free-particle dis-
persion scenario employed in the usual BTK paradigm. In
particular, this is relevant to the interpretation of the point-
contact spectroscopy measurements of Refs. 10 and 11.
There is, however, an important caveat with regard to which
conclusion one may draw with regard to the symmetry of the
superconducting OP from the tunneling data of Refs. 10 and
11. In these works, polycrystalline samples were used, while
the orbital/nodal structure of the OP can only be convinc-
ingly probed in single-crystal specimens. This is because
tunneling into polycrystalline samples may lead to intrinsic
averaging effects which distort the contribution from aniso-
tropic OPs.

In Fig. 2, we plot the conductance for tunneling along the
�100� direction for several OP symmetries. As seen, the
dxy-wave case stands out from the rest as it features a con-
siderable ZBCP. Comparing with the experimental data of
Ref. 11, we would conclude that a nodal d-wave OP is likely
to be realized in LaFeAsO0.9F0.1−�. The results of Ref. 10
seem to be most consistent with either s-wave or extended
s-wave pairing, as only one gap is seen in the spectra. For the
s-wave and dxy-wave cases, the standard BTK approach ap-
pears to suffice in order to qualitatively say something about
the OP symmetry. However, the results are quite different
from the usual BTK approach when considering the ex-
tended s-wave and dx2−y2-wave symmetries. More specifi-
cally, we find satellite features at subgap energies, including
sharp peaks. These features most likely pertain to the specific

band structure which we consider here �see Fig. 1� and are
thus not possible to capture within the conventional BTK
treatment with the cylindrical Fermi-surface approximation.
In fact, the density of states �DOS� in our minimal two-band
model is a highly nonmonotonic function of energy and con-
tains two Van Hove singularities.8,17

Let us also consider the case where there is one fully
gapped OP and one nodal OP to see what fingerprints this
combination leaves in the conductance spectra. In Fig. 3, we
plot the conductance for the case where kx is fully gapped,
while ky has a nodal symmetry. For concreteness, we con-
sider s-wave+dxy-wave pairing and dx2−y2-wave+dxy-wave
pairing in Figs. 3�a� and 3�b�, respectively. As seen, the nodal
OP gives rise to a ZBCP while there are several satellite
features in addition to the large coherence peak at the gap
edge. The plots are qualitatively similar regardless of
whether the fully gapped OP is s wave or dx2−y2 wave, while
the features in the conductance are qualitatively more pro-
nounced in the s-wave case due to the better gapping of the
Fermi surface. Finally, we consider the evolution of the con-
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FIG. 2. �Color online� Plot of the conductance spectra for tunneling along the �100� axis in an iron-pnicitide N �S junction for several
possible order-parameter symmetries. Only in the dxy-wave case =0sxsy is there a considerable ZBCP. Note the different scale on the
voltage axis for this case due to the narrowness of the ZBCP. High �low� values of the parameter Z denote low �high� transmissivity
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FIG. 3. �Color online� ��a� and �b�� Plot of the conductance
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ductance spectra upon changing the doping level �. The
Fermi-surface topology evolves with a change in � as shown
in Fig. 3�c�; the electron pockets increase in size while the
hole pockets decrease in size upon increasing �. To see how
the subgap features obtained in Fig. 2 evolve upon modify-
ing �, consider Fig. 3�d� where we provide results for the
cx+cy symmetry with Z=3. As seen, the satellite features
shown in Fig. 2 are still present and qualitatively the same,
but they are shifted to different bias voltages.

IV. SUMMARY

In summary, we have developed a theory for Andreev
reflection in the iron-based high-Tc superconductors. Starting
with a tight-binding model on a square lattice to model the
puckered FeAs planes, we have investigated several OP sym-
metries and the resulting conductance spectra. Fully taking
into account the Fermi-surface topology and the quasiparticle
dispersion relation, we have investigated scenarios where the

symmetry of the superconducting OP in both bands is the
same and where it is different, i.e., one is fully gapped and
the other is nodal. We find that the standard BTK formalism
should give qualitatively correct results for the case where
the OP symmetries on both bands are either isotropic s wave
or d wave. However, the results differ considerably for the
extended s-wave symmetries, as we find satellite features at
subgap energies which are absent within the usual BTK
treatment. Our results may be useful in the context of ana-
lyzing quantum transport data of tunneling in
normal �superconductor junctions involving the iron
pnicitides.
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